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Recommendation services play a pivotal role in financial decision-making and multimedia 
content services, as they suggest investment operations and personalized items to users, typically 
characterized by multi-modal features such as visual, textual, and acoustic attributes. Graph 
Neural Networks (GNNs), demonstrating the immense potential for graph representation learning 
and recommendation systems, are capable of learning user/item embeddings by taking into 
account the graph topological structure and the multi-modal node features. Yet, a substantial 
number of multi-modal recommendation studies have seemingly ignored the inherent bias among 
different modalities during feature fusion, consequently leading to sub-optimal embeddings 
for items with multi-modal features. To mitigate this issue, we propose a novel multi-modal 
recommendation framework that integrates GNNs with deep mutual learning techniques, termed 
GNNMR. GNNMR uses the mutual knowledge distillation technique to collaboratively train 
multiple uni-modal bipartite user-item graphs. Each GNN is trained specifically on the uni-

modal user-item bipartite graph, which is separated from the original multi-modal user-item 
bipartite graph, to generate uni-modal embeddings. These uni-modal embeddings then act as 
mutual supervision signals, allowing the model to uncover and synchronize the latent semantic 
relationships among different modalities. Subsequently, the model can conduct inference in 
an ensemble manner, leveraging uni-modal embeddings from diverse modalities. Experimental 
results on two real-world datasets demonstrate that the proposed GNNMR outperforms other 
multi-modal recommendation methods in the Top-K recommendation task.

1. Introduction

Effective prediction and recommendation services can help improve the service quality of financial decision-making and multi-

media content services. In the capital market, many institutional investors make equity investments in listed companies, which may 
involve information in the form of text, images, and sound. Analyzing such complex multi-model information is a huge challenge 
for retail investors. Therefore, recommending the investment trends of institutional investors to retail investors with limited atten-
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Fig. 1. Example of a user-item bipartite graph with multi-modal item features.

tion can save investment costs and improve investment efficiency. For online multimedia platforms, such as TikTok and YouTube, 
recommendation services play a crucial role due to the massive amount of content available, like short videos. The provision of 
personalized recommendations for each user can greatly enhance their user experience. Typically, these recommendation models, 
which are often referred to as collaborative filtering (CF)-based models, are trained over user-item bipartite graphs to learn user 
and item embeddings [12,4,18,42,24]. The recommendation list for each user can then be obtained by calculating the similarities 
between user and item embeddings. However, a major hurdle lies in the sparsity of the user-item bipartite graph, which complicates 
the training process for accurate user and item embeddings.

To address this issue, one potential solution involves leveraging the abundant multi-modal features of the items to mitigate the 
sparsity problem in interaction data, which is a strategy often associated with multi-modal recommender systems [43]. Taking the 
short-video recommendation as an example [35], as shown in Fig. 1, users interact with items (e.g., short videos) by clicking on 
the ones that pique their interest. Each item is coupled with different modality features. For example, a short video can be broken 
down into frames (representing visual features), titles (representing textual features), sounds (representing acoustic features), and 
other modal features like ID-related features. In this paper, we posit that effectively incorporating this auxiliary information (i.e., the 
multi-modal features of items) could enrich user and item embeddings, thereby leading to improved recommendation performance.

Over the past few years, the application of deep neural networks for learning data representations [33,32,31] has seen significant 
success. This is particularly true for Graph Neural Networks (GNNs) in the realm of recommender systems [37,36,38,45]. Their 
popularity primarily stems from their exceptional performance when dealing with graph-structured data. Notable methods such 
as GC-MC [3], NGCF [34], and PinSage [39] iteratively learn user/item embeddings by capturing high-order interactions between 
users and items, and harness their side information (e.g., features of users/items) via the message passing mechanism. Addition-

ally, as mentioned above, item features on multimedia platforms often encompass multiple modalities. Consequently, several studies 
[35,22,28] have enhanced user/item embeddings by integrating diverse modality information, demonstrating superiority over meth-

ods that consider only uni-modality features. For instance, the groundbreaking VBPR work [11] boosted item node embeddings by 
merging visual modality features with ID-type features using a straightforward concatenation operator. There also exist GNN-based 
multi-modal recommendation methods like MMGCN [35] and LATTICE [40], designed to learn not only the collaborative relation-

ships between users and items but also the semantic relationships between modality features. However, most current multi-modal 
recommendation methods [43] typically adopt a process that separately learns user/item embeddings for different modalities be-

fore merging them. Nevertheless, recent empirical results [43] suggest that an improper fusion of features from various modalities 
could introduce additional noise due to overlooking the implicit bias among these modalities, thereby leading to model performance 
inferior to methods that use information from a single modality alone. This phenomenon is also known as modality failure [5].

In light of the challenges at hand, and inspired by the recent successes of deep mutual learning techniques [41,9,5] in the realm of 
representation learning, we propose a novel multi-modal recommendation method grounded on GNN-based mutual learning, termed 
as GNNMR. This method is unique in its fusion-free way during the training process, thereby eliminating the need for explicit modal 
fusion while maintaining the ability to learn and align the semantic relationships across different modalities. More specifically, 
GNNMR employs the knowledge distillation technique to concurrently train several Graph Neural Networks (GNNs), exploiting the 
implicit semantic relationships among different modalities. The original multi-modal user-item bipartite graph is first segmented into 
2

multiple uni-modal user-item bipartite graphs based on varying item modality features. Subsequently, GNNs function as encoders, 
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learning user/item embeddings for different modalities within each individual uni-modal graph. This process allows various uni-

modal embeddings to act as mutual supervision signals alongside ground truths, guiding the training of each GNN model and the 
uni-modal embeddings themselves. Ultimately, the model is capable of making predictions based on an ensemble of these uni-modal 
embeddings

The main contributions of this paper are summarized as follows:

• We assert that existing multi-modal recommendation methods are plagued by a modality failure issue, originating from modality 
fusion during the training process, which ultimately undermines the recommendation performance.

• We propose a novel multi-modal recommendation framework that integrates GNNs with deep mutual learning techniques, named 
GNNMR. This framework uniquely allows for the simultaneous training of multiple GNNs on uni-modal user-item bipartite 
graphs, thereby leveraging and sharing knowledge across different modalities for more precise recommendations.

• To validate the effectiveness of GNNMR, we have conducted an extensive series of experiments using two real-world multi-modal 
datasets for the Top-K recommendation task. The experimental results clearly demonstrate the superiority of GNNMR.

The rest of this paper is organized as follows. Section 2 introduces the main related works about the research problem. Sec-

tion 3 provides essential definitions associated with the problem and describes the proposed GNNMR in detail. Section 4 introduces 
experimental settings, results, and discussions, followed by a conclusion in Section 5.

2. Related work

This section introduces the main related works including recommender systems, multi-modal recommender systems, and deep 
mutual learning techniques.

2.1. Recommender systems

Presently, mainstream recommendation systems primarily employ collaborative filtering (CF) methods. Such methods generally 
learn from the ID embeddings of users and items, drawing from user-item interaction data. The mainstays of CF-based recommen-

dation methods encompass matrix factorization-based methods [2,14,13] and graph neural network (GNN)-based methods [36]. 
Matrix factorization-based methods involve decomposing the user-item interaction matrix into a lower-dimensional user matrix and 
item matrix, while GNN-based methods apply message-passing mechanisms in a user-item bipartite graph to identify high-order 
relationships between users and items. However, due to the typically sparse nature of user-item interaction data, these models might 
face cold start issues [8]. A prevalent solution is to incorporate side information [2] into the learning process. In this study, we 
concentrate on the multi-modal feature information of items.

2.2. Multi-modal recommender systems

Multi-modal feature information related to item nodes has been shown to enhance node representations, thereby improving 
recommendation performance. For instance, VBPR [11] integrates visual features with ID-related features by concatenating the 
corresponding embeddings to form the final item embeddings. On the other hand, MMGCN [35] posits that user preferences may 
vary across different modality features. It, therefore, proposes a modality-specific GNN model to derive user embeddings from various 
modality-aware bipartite user-item graphs. PMGT [21] introduces a pre-training GNN framework that learns item embeddings by 
taking into account both multi-modal item features and their relationships, such as co-purchasing. Meanwhile, MKGAT [28] integrates 
the multi-modal knowledge graph into the recommender system, enabling the explicit learning of relations among different types 
of entities and the aggregation of feature information from neighboring entities through an information propagation mechanism. 
MGAT [29], AMVAE [17], and A2CMHNE [16] implement various attention-based strategies to capture the influence of different 
modalities. CER [6] introduces a collaborative embedding regression model that is able to incorporate multi-modal features with user-

item interactions via the proposed priority-based late fusion method. However, most prior work on multi-modal recommendations 
overlooks the implicit bias between different modalities during feature fusion, resulting in sub-optimal embeddings for items with 
multi-modal features.

2.3. Deep mutual learning

Knowledge distillation, as proposed in [15], aims to transfer knowledge from a powerful, larger teacher model to a more compact 
student model. Mutual learning is a unique knowledge distillation framework that considers all models as both teacher and student 
models during the training process, promoting mutual learning among them. For instance, DML [41] and Co-distillation [1] incor-

porate an additional distillation loss between each pair of training models to facilitate mutual learning. ONE [46] employs a gate 
controller to merge the predictions of different models, while CLNN [27] introduces a hierarchical multi-branch design to enhance 
model diversity. KDCL [9], on the other hand, suggests the dynamic generation of soft labels to improve all models. Despite these 
advances, few studies have leveraged deep mutual learning techniques to tackle multi-modal recommendation issues. To address this 
3

gap, our paper explores the application of the deep graph mutual learning model to the multi-modal recommendation problem.
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Table 1

Description of main mathematical symbols in this paper.

Symbol Description

 Multi-modal user-item bipartite graph.

𝑉 The set of nodes in the user-item bipartite graph.

𝑢 The user node.

𝑖 The item node.

𝑉𝑢𝑠𝑒𝑟 The set of user nodes.

𝑉𝑖𝑡𝑒𝑚 The set of item nodes.

𝐸 The set of edges in the user-item bipartite graph.

F𝑖 The multi-modal features associated with item node 𝑖.

f𝑚
𝑖

The feature vector of item node 𝑖 in the 𝑚-th modality.

𝑑𝑚 The feature dimension of the 𝑚-th modality.

|𝑀| The number of modalities.

𝐸𝑚𝑖𝑠𝑠 The latent users’ preferences for items.

𝑓𝑡𝑒𝑎(⋅) The teacher model in the knowledge distillation learning.

𝑓𝑠𝑡𝑢(⋅) The student model in the knowledge distillation learning.

𝑦 The ground truth.

𝑦𝑠𝑡𝑢 The prediction from the student model.

𝑦𝑡𝑒𝑎 The prediction from the teach model.

𝑠𝑢𝑝 The supervised loss.

𝐾𝐷 The knowledge distillation loss.

𝜆 The weight parameter associated with the knowledge distillation loss.

𝑙 The layer index of the GNN model.

h𝑙+1
𝑢−𝑚 The embedding of user 𝑢 at (𝑙 + 1) layer with modality m.

h
𝑙+1
𝑖−𝑚 The embedding of item 𝑖 at (𝑙 + 1) layer with modality m.

𝑑 The dimension of embeddings.

𝜎(⋅) The activation function.

 (𝑢) The first order neighbor nodes of user 𝑢.

 (𝑖) The first order neighbor nodes of item 𝑖.

𝑊 𝑙
𝑚

The trainable parameters in the 𝑙-th layer of GNN for the modality m.

𝑠𝑚
𝑢𝑖

The similarity score between user 𝑢 and item 𝑖 under modality m.

3. GNNMR

3.1. Preliminary

Before we delve into the details of our proposed GNNMR, we first clarify a few key concepts related to our research problem. 
Furthermore, for ease of understanding, we have compiled a summary of all the symbols used in this paper and presented them in 
Table 1.

• Multi-modal user-item bipartite graph is represented as a graph, denoted by  = (𝑉 , 𝐸). In this representation, the set of 
nodes 𝑉 consists of two types of nodes, namely the user nodes (denoted by 𝑉𝑢𝑠𝑒𝑟) and the item nodes (denoted by 𝑉𝑖𝑡𝑒𝑚). Thus, 
𝑉 = {𝑉𝑢𝑠𝑒𝑟, 𝑉𝑖𝑡𝑒𝑚}. Each individual user is represented by a node 𝑢 ∈ 𝑉𝑢𝑠𝑒𝑟, while each item is represented by a node 𝑖 ∈ 𝑉𝑖𝑡𝑒𝑚. The 
set of edges 𝐸 within the graph, where 𝐸 ⊆ 𝑉𝑢𝑠𝑒𝑟 ×𝑉𝑖𝑡𝑒𝑚, signifies the interactions between the users and items. In addition to this, 
each item node 𝑖 is linked with multi-modal features, given by F𝑖 = {f1

𝑖
, ..., f𝑚

𝑖
, ..., f|𝑀|

𝑖
}. Here, the symbol f𝑚

𝑖
∈ ℝ𝑑𝑚 characterizes 

the feature vector of item node 𝑖 within the 𝑚-th modality and has a feature dimension of 𝑑𝑚 . Lastly, |𝑀| represents the total 
number of modalities.

• Multi-modal recommendation systems aim to predict the latent preferences of users towards various items within a given 
multi-modal user-item bipartite graph. More specifically, the primary objective of these systems is to predict the missing links, 
denoted as 𝐸𝑚𝑖𝑠𝑠 ⊆ 𝑉𝑢𝑠𝑒𝑟 × 𝑉𝑖𝑡𝑒𝑚, in the multi-modal user-item bipartite graph  = (𝑉 , 𝐸) as defined earlier.

• Graph neural networks are specific types of neural network models used to handle the graph data, such as the multi-modal 
user-item bipartite graph described above. The core idea of a graph neural network is to learn the representation of nodes based 
on the topology structure of the graph and features of the nodes via the message-passing mechanism [7,37]. Specifically, let 𝑣
represent the target node, then we can calculate its representation h𝑣 by the following formula:

h(𝑙+1)
𝑣

=𝑈𝑝𝑑𝑎𝑡𝑒(h(𝑙)
𝑣
,𝐴𝑔𝑔({h(𝑙)

𝑣
,h

(𝑙)
𝑗
,∀𝑗 ∈ (𝑣)})) (1)

where  (𝑣) represents the set of neighbor nodes of the target node 𝑣, and h(𝑙)
𝑗

represents the representation of the neighbor node 
in the 𝑙-th layer of GNN. Furthermore, 𝐴𝑔𝑔(⋅) and 𝑈𝑝𝑑𝑎𝑡𝑒(⋅) are the aggregation function for aggregating features of neighbor 
nodes and the update function for updating the representation of the target node, respectively. It is worth noting that the main 
different variants of graph neural networks lie in the use of different 𝐴𝑔𝑔(⋅) and 𝑈𝑝𝑑𝑎𝑡𝑒(⋅) functions [44].

• Knowledge distillation [15] is a learning paradigm in which knowledge is distilled from a pre-trained teacher model, denoted 
4

as 𝑓𝑡𝑒𝑎(Θ∗
𝑡𝑒𝑎

), to a student model, denoted as 𝑓𝑠𝑡𝑢(Θ𝑠𝑡𝑢), where Θ∗
𝑡𝑒𝑎

and Θ𝑠𝑡𝑢 are pre-trained parameters for the teacher model 
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Fig. 2. The overview of the proposed GNNMR.

and the trainable parameters for the student model, respectively. This paradigm has proven effective in enhancing the student 
model’s performance. Specifically, the conventional loss for the targeted student model is defined as follows:

Θ∗
𝑠𝑡𝑢

= argmin
Θ𝑠𝑡𝑢

𝑠𝑢𝑝(𝑦,𝑓𝑠𝑡𝑢(x,Θ𝑠𝑡𝑢)) + 𝜆𝐾𝐷(𝑓𝑡𝑒𝑎(x,Θ∗
𝑡𝑒𝑎

), 𝑓𝑠𝑡𝑢(x,Θ𝑠𝑡𝑢)) (2)

Here, x represents the training sample. 𝑠𝑢𝑝 is the supervised loss function (such as the cross-entropy loss in classification tasks) 
which measures the discrepancy between the student model’s prediction 𝑓𝑠𝑡𝑢(x, Θ𝑠𝑡𝑢) with respect to the training sample x, and 
the corresponding ground truth, 𝑦. On the other hand, 𝐾𝐷 is the knowledge distillation loss, aiming to transfer knowledge from 
the pre-trained teacher model to the student model using a weight parameter 𝜆. It is worth mentioning that the deep mutual 
learning method [41] represents a unique knowledge distillation framework, which does not differentiate between teacher and 
student models, but rather enables models to learn reciprocally.

3.2. Proposed method

In this section, we present a detailed introduction to our proposed GNNMR, the schematic of which is depicted in Fig. 2. GNNMR 
is composed of two main phases: the uni-modal embedding phase, and the mutual learning phase. In the first phase, unimodal 
embeddings are learned by extracting user/item embeddings from separate unimodal user-item bipartite graphs, which are derived 
from the original multimodal user-item bipartite graph. The mutual learning phase, constituting the second phase, seeks to identify 
and align the semantic relationships among different modalities. Algorithm 1 provides a summary of the steps involved in this 
5

proposed method.
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Algorithm 1 GNNMR.

Require: Multi-modal user-item bipartite graph  = (𝑉 , 𝐸)
Ensure: The user embedding h𝑢 and the item embedding h𝑖

1: for 𝑒𝑝𝑜𝑐ℎ ← 0, 1, ... do

2: for 𝑚 ← 1 to 𝑀 do

3: h𝑢−𝑚 ← Eq. (3)

4: h𝑖−𝑚 ← Eq. (4)

5: 𝑠𝑚
𝑢𝑖
← Eq. (5)

6: end for

7: for 𝑚 ← 1 to 𝑀 do

8: Gradient descent ← Eq. (8)

9: end for

10: end for

3.2.1. Uni-modal embedding

Given that item node features encompass multiple modalities across different feature spaces, we initially disassemble the original 
multi-modal user-item bipartite graph into several uni-modal user-item bipartite graphs. This step allows us to directly employ 
various readily available graph neural network variants2 for obtaining user/item embeddings. In this study, to differentiate the 
impacts of various neighboring nodes, we harness the Graph Attention Network (GAT) [30] to learn the user/item embeddings from 
these uni-modal user-item bipartite graphs, respectively.

• Uni-modal user embedding. For each uni-modal user-item bipartite graph, each user node is connected to only the nodes of 
the item that the user has interacted with, and each item node is only associated with uni-modal features. In this way, we can 
capture the preferences of users in this modal space by aggregating the uni-modal feature information of the item nodes that 
users have interacted with (line 3 in Algorithm 1). Specifically, we could calculate the (𝑙 + 1)-th layer embedding h(𝑙+1)

𝑢−𝑚 ∈ℝ𝑑 of 
the user 𝑢 from the item space (i.e., the uni-modal user-item graph) with modality 𝑚 by GAT [30] as follows:

h(𝑙+1)
𝑢−𝑚 = 𝜎(

 (𝑢)∑
𝑖∈ (𝑢)

𝛼𝑢𝑖𝑊
(𝑙)
𝑚

h
(𝑙)
𝑖−𝑚) (3)

where 𝑖 ∈ (𝑢) is the first-order item neighbor node of user 𝑢. 𝑊 (𝑙)
𝑚 contains the 𝑙-th layer trainable parameters, and h(𝑙)

𝑖−𝑚 is the 
embedding of the item 𝑖 with modality 𝑚 in the 𝑙-th layer, and h(0)

𝑖−𝑚 = f𝑚
𝑖

. 𝑑 is the dimension of embeddings, and 𝜎(⋅) is the 
activation function. 𝛼𝑢𝑖 is the attention coefficient which can be used to distinguish the degree of a user’s preference for different 
items they have interacted with (line 4 in Algorithm 1), and can be calculated as follows [30].

𝛼𝑢𝑖 =
𝑒𝑥𝑝(𝜎(𝑊 𝑇

𝑎
(h(𝑙)

𝑢−𝑚||h(𝑙)
𝑖−𝑚))∑ (𝑢)

𝑖∈ (𝑢) 𝑒𝑥𝑝(𝜎(𝑊
𝑇
𝑎
(h(𝑙)

𝑢−𝑚||h(𝑙)
𝑖−𝑚))

(4)

where 𝑊𝑎 ∈ℝ2𝑑 contains the trainable parameters. ⋅𝑇 and || represent the transposition operation and concatenation operation 
respectively.

• Uni-modal item embedding. Similarly, each item node in the uni-modal user-item bipartite graph is connected only to the users 
who have interacted with it. In this way, we can learn the representation of each item in the given modality by aggregating the 
features of the users who have interacted with it (line 5 in Algorithm 1). Specifically, the (𝑙 + 1)-th layer embedding h(𝑙+1)

𝑖−𝑚 ∈ℝ𝑑

of the item 𝑖 on the uni-modal user-item bipartite graph with modality m can be calculated by GAT as follows [30]:

h
(𝑙+1)
𝑖−𝑚 = 𝜎(

 (𝑖)∑
𝑗∈ (𝑖)

𝛼𝑖𝑗𝑊
(𝑙)
𝑚

h
(𝑙)
𝑗−𝑚) (5)

where 𝑗 ∈ (𝑖) is the first-order user neighbor node of item 𝑖. 𝛼𝑖𝑗 is the attention coefficient calculated by (4). 𝑊 (𝑙)
𝑚 contains the 

𝑙-th layer trainable parameters, and h(𝑙)
𝑗−𝑚 is the embedding of the user 𝑗 on modality 𝑚.

Finally, the user/item embeddings on the other modalities can be obtained in the same way with different GNN trainable 
parameters.

3.2.2. Deep mutual learning

Recent empirical results [43,5] have indicated that the improper fusion of features from different modalities may introduce 
additional noise, as it often overlooks the implicit bias between different modalities. This oversight can lead to model performance 
that is inferior to that achieved when using information from a single modality alone. To alleviate this issue, we propose a fusion-free 
method for the training process inspired by the deep mutual learning technique [41]. This approach does not necessitate explicit 
modal fusion, yet it remains capable of learning and aligning the semantic relationships between different modalities. As previously 

2 It’s worth noting that our proposed framework is model-agnostic, implying that the proposed framework can be seamlessly integrated with other GNN or GNN-
6

based recommendation methods.
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mentioned, for a uni-modal user-item bipartite graph with modality m, we employ a modal-specific GNN model as an encoder. This 
enables the acquisition of the user embedding h𝑢−𝑚 and item embedding h𝑖−𝑚. Consequently, the similarity score 𝑠𝑚

𝑢𝑖
between the 

user 𝑢 and item 𝑖 within modality m can be calculated as follows:

𝑠𝑚
𝑢𝑖
= h𝑇

𝑢−𝑚h𝑖−𝑚 (6)

In this way, regarding the Top-K recommendation task, the loss function for a model with the m modality comprises two compo-

nents: the supervised term and the mutual learning term.

• Supervised term 𝐵𝑃𝑅 aims to measure the inconsistency between the model predictions and the ground truth. To this end, we 
utilize Bayesian Personalized Ranking (BPR) [26] as the supervised term for the modality m as follows:

𝐵𝑃𝑅 =
∑
(𝑢,𝑖,𝑖′)

−𝐼𝑛𝜇(h𝑇
𝑢−𝑚h𝑖−𝑚 − h𝑇

𝑢−𝑚h′
𝑖−𝑚) (7)

where 𝜇(⋅) is the sigmoid function, and 𝑖′ represents the items that users have not interacted with.

• Mutual learning term 𝑀𝐿 aims to align the predictions of modality m and predictions of other modalities. Intuitively, different 
modal features should have consistent predictive results. Thus, for each modality 𝑚, we take the ensemble of all the other 𝑀 −1
modalities as the teacher. Thus, we adopt the Kullback Leibler (KL) Divergence to measure the distance from the predictions 𝑠𝑚

𝑢𝑖

of modality m to predictions 𝑠𝑜𝑡ℎ
𝑢𝑖

of other modalities as follows:

𝑀𝐿 =𝐷𝐾𝐿(𝑠𝑜𝑡ℎ𝑢𝑖 ||𝑠𝑚𝑢𝑖) =
∑
(𝑢,𝑖)

𝑠𝑜𝑡ℎ
𝑢𝑖

𝑙𝑜𝑔
𝑠𝑜𝑡ℎ
𝑢𝑖

𝑠𝑚
𝑢𝑖

, 𝑠𝑜𝑡ℎ
𝑢𝑖

= 1
|𝑀|− 1

|𝑀|∑
𝑐=1,𝑐≠𝑚

𝑠𝑐
𝑢𝑖

(8)

Finally, the final loss function 𝑚 for the model under the modality m is defined as follows:

𝑚 =𝐵𝑃𝑅 + 𝜆𝑀𝐿 (9)

where 𝜆 is a hyperparameter to control the mutual learning term.

• Optimization The process of mutual learning is performed throughout the model training. Specifically, at each round of it-
eration, the models under each modality independently compute the uni-modal user/item embeddings, and then update the 
parameters of corresponding GNN models and user/item embeddings successively based on formula (8) until the models con-

verge.

3.2.3. Prediction

After training, the model can perform inference in a uni-modal embedding ensemble manner. Here, we introduce two commonly 
used uni-modal ensemble methods including concatenation and average.

• Concatenation ensemble (GNNMR-con) is the simplest ensemble method which obtains the final multi-modal user/item em-

beddings h𝑢 and h𝑖 by concatenation operation || as follows:

h𝑢 =⇑𝑀
𝑚=1 h𝑢−𝑚,h𝑖 =⇑𝑀

𝑚=1 h𝑖−𝑚 (10)

• Average ensemble (GNNMR-ave) hypothesizes that the different modalities have the same importance, which requires the 
different modality embeddings with the same dimension and could be calculated as follows:

h𝑢 =
1

|𝑀| (
𝑀∑
𝑚=1

h𝑢−𝑚), h𝑖 =
1

|𝑀| (
𝑀∑
𝑚=1

h𝑖−𝑚) (11)

4. Performance evaluation

To validate the effectiveness of the proposed method, we conduct extensive experiments on two real-world multi-modal bipartite 
graph datasets to answer the following research questions (RQs):

• RQ1: How is the performance of GNNMR compared with other multi-modal recommendation methods?

• RQ2: Does mutual learning alleviate the problem of modality failure [5]?

• RQ3: How do the different hyperparameters (e.g., embedding dimension) affect the performance of GNNMR?
7

• RQ4: Can the proposed method be effective in real-world application scenarios?
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Table 2

The statistic information of the datasets.

Dataset Fund Steam

#node #user 165 63347

#item 5098 15864

#edge #user-item 791025 750050

#modalities user 1 1

item 19 2

4.1. Experimental setup

4.1.1. Datasets

We validate the effectiveness of the proposed GNNMR on two real-world multi-modal bipartite graph datasets including one 
public dataset on Steam [23] and one private dataset on investment funds named Fund. The statistical information of both datasets 
is summarized in Table 2.

• Steam: Steam dataset [23] is a gaming purchasing dataset by crawling users from the Australian Steam community. It consists 
of users, items (i.e., games with posters and textual descriptions), and user-item interactions (i.e., purchases). We randomly 
select negative samples (i.e., games not purchased by users.) with an equal number of positive samples (i.e., games purchased 
by users.) to construct training triplets. Furthermore, we use pre-trained ResNet18 [10] to extract visual features from posters 
of games, and the pre-trained SentenseBert [25] is utilized to extract textual features from game descriptions. The dataset is 
randomly split in 8:1:1 for training, validation, and testing.

• Fund: Fund is a dataset of investment data for fund company-publicly traded company. In the context of the Fund dataset, the 
‘user node’ represents the fund company, while the ‘item node’ represents the publicly traded company. The edges between 
‘user-item’ represent the fund company’s investment in that particular publicly traded company. In this dataset, we consider the 
‘user’ ID as a unique feature of the user node, while the 19 different domain features associated with the ‘item node’ are viewed 
as features of different modalities. For each modality, the one-hot vector is utilized as to encode the corresponding feature. The 
dataset is randomly split in 8:1:1 for training, validation, and testing.

4.1.2. Comparison method

We compare the proposed GNNMR with the following multi-modal recommendation methods:

• GAT [30] is the representative GNN method with the attention mechanism, which is a pure collaborative filtering method that 
does not unitize any side information.

• VBPR [11] is the multi-modal recommendation method concatenating other modality features with ID-related features.

• PMGT [20] a pre-training GNN framework to learn item embeddings by considering both multi-modal item features and their 
relationships such as co-purchase.

• A2CMHNE [16] employ various attention-based strategies to capture the influence of the different modalities.

• MMGCN [35] is a multi-modal recommendation method that could capture the user preference on different modalities.

4.1.3. Parameters settings

The hyperparameters of our proposed GNNMR are set as follows. We utilize Adam SGD optimizer [19] and LeakyReLU as the 
activation function (i.e., 𝜎(⋅) = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (⋅)) throughout the experiments. For each uni-modal user-item bipartite graph, the two-

layers GATs are utilized to learn user/item embeddings with the embedding size 𝑑 = 128. The batch size is set to 256, and we search 
the learning rate in {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005}. We also search the mutual learning weight 𝜆 from {0.1, 0.5, 1, 2}.

4.1.4. Evaluation metrics

The Recall@K and NDCG@K, defined as below, are widely utilized as evaluation metrics for the Top-K recommendation task [43].

Recall = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(12)

DCG =
𝐾∑
𝑖=1

2𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒
𝑖

− 1
𝑙𝑜𝑔2(𝑖+ 1)

, NDCG = 𝐷𝐶𝐺

𝑖𝐷𝐶𝐺
(13)

where TP and FN represent predicted labels True Positive and True Negative, respectively. iDCG is the ideally ordered recom-

mendation list for DCG. Specifically, the Recall metric measures how many relevant items are successfully recommended in the 
recommendation list, and the NDCG metric considers both the relevance of recommended items and their positions in the list. 
8

Furthermore, both Recall and NDCG are metrics where higher values indicate better performance in the recommender system.
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Table 3

The Top-K recommendation results for different methods with respect to Recall. The best results are marked 
in bold.

Method Steam Fund

Recall@10 Recall@20 Recall@50 Recall@10 Recall@20 Recall@50

GAT 0.2241 0.2542 0.3218 0.0509 0.0598 0.1026

VBPR 0.244 0.2796 0.3417 0.0527 0.0652 0.1102

PMGT 0.2409 0.281 0.3405 0.0503 0.0637 0.1078

A2CMHNE 0.2346 0.2746 0.3352 0.0536 0.064 0.1067

MMGCN 0.2412 0.2805 0.341 0.0509 0.0648 0.1072

GNNMR-con 0.2659 0.3028 0.3699 0.061 0.0702 0.1242

GNNMR-ave 0.2667 0.3073 0.3624 0.0625 0.0717 0.1308

Table 4

The Top-K recommendation results for different methods with respect to NDCG. The best results are marked 
in bold.

Method Steam Fund

NDCG@10 NDCG@20 NDCG@50 NDCG@10 NDCG@20 NDCG@50

GAT 0.1032 0.1352 0.2239 0.0292 0.0397 0.096

VBPR 0.1127 0.1487 0.2316 0.0306 0.0451 0.0917

PMGT 0.1096 0.1481 0.2345 0.03 0.0426 0.0915

A2CMHNE 0.1158 0.1471 0.2302 0.0314 0.0431 0.0932

MMGCN 0.1142 0.1488 0.2314 0.0311 0.0424 0.0978

GNNMR-con 0.1226 0.1527 0.2578 0.0405 0.0458 0.102

GNNMR-ave 0.13 0.1559 0.2552 0.0417 0.0463 0.1187

Table 5

The results of ablation studies with respect to Recall@20 and NDCG@20

on Steam.

Metrics GNNMR w/o ML GNNMR w ML GNNMR

Textual Visual Textual Visual

Recall@20 0.2845 0.2836 0.3042 0.2996 0.3073

NDCG@20 0.1476 0.146 0.1555 0.1551 0.1559

4.2. Top-K recommendation (RQ1)

To compare the performance of the proposed GNNMR with other multi-modal recommendation methods, we test them on the 
Top-K recommendation task with 𝐾 = 10, 20, 50. Each algorithm is tested 5 times independently, and the average results are reported 
for comparison. The experimental results are summarized and given in Table 3 and Table 4. From the results, we can observe that:

• GNNMR outperforms all the comparison methods on both Fund and Steam datasets, which demonstrates the effectiveness of 
the proposed method. For example, GNNMR improves the second-best comparison method with respect to NDCG@20 by 4.77%
and 2.67% on Steam and Fund, respectively. We attribute the improvements to GNNMR learning superior node embeddings by 
exploiting the different semantic information among different modalities by mutual learning techniques.

• The average-based ensemble method (GNNMR-ave) outperforms the concatenation-based ensemble method (GNNMR-con) in 
most cases on Steam and Fund datasets. One possible reason is that the concatenation-based ensemble method has a larger 
embedding size leading to introducing additional noise.

• Generally speaking, the methods leveraging the side information such as multi-modal features could get better performance than 
GAT. One possible explanation is that the multi-modal feature information could alleviate the data sparse issue.

4.3. Ablation experiment (RQ2)

To explore the effects of different components of the proposed GNNMR, we conduct the ablation experiment and compare different 
components on the Steam dataset for the Top-K recommendation task. We use the performances of GNNMR-ave to represent the 
GNNMR performance due to its superiority on the Steam dataset. In particular, we first explore the effect of the mutual learning 
component. Specifically, we implement the model without the mutual learning loss, denoted as GNNMR w/o ML, and independently 
train two GNN models for two modalities (i.e., the textual and visual modalities). Finally, we report the model performance for 
different uni-modal models separately. In addition, we implement the model with the mutual learning loss but remove the uni-modal 
9

embedding ensemble component, denoted as GNNMR w ML. The experimental results are shown in Table 5, and we can observe that:
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Fig. 3. Hyper-parameter sensitivity analysis of the dimension of embedding 𝑑.

Fig. 4. Hyper-parameter sensitivity analysis of the weight of the mutual learning loss 𝜆.

• Overall, all the components have significant effects on the proposed GNNMR, which demonstrates that all the components are 
essential for GNNMR.

• The different modal features have different effects on the Steam dataset. In particular, the texture features have a larger effect 
than visual features on the Steam dataset, which demonstrates that users of the Steam platform pay more attention to texture 
information than visual information.

• The mutual learning loss has significant effects on GNNMR, which shows that it is capable of well exploiting the semantic 
information among different modalities.

• The uni-modal embedding ensemble can achieve better performance than methods using single-modal features. It is reasonable 
that more feature information can better describe the user’s preference.

4.4. Hyperparameter sensitivity analysis (RQ3)

To explore the effect of different hyperparameters including the dimension 𝑑 of user/item embeddings and the weight 𝜆 of the 
mutual learning loss. We conduct experiments over two datasets for the Top-K recommendation task and report Recall@20 and 
NDCG@20. In particular, we explore 𝑑 in {16, 32, 64, 128, 256, 512}, and 𝜆 from {0.1, 0.5, 1, 2} respectively. The experimental results 
are shown in Fig. 3 and Fig. 4 respectively, and we can observe that:

• With the increasing of the dimension of embeddings, the performance increases first and then tends to be steady on both datasets. 
It is reasonable that the small embedding size may contain incomplete feature information resulting in bad performance.

• The proposed model achieves good performance when the weight 𝜆 of mutual learning loss lies in the range from 0.5 to 1 on 
both datasets. One possible reason is that the model cannot effectively share the knowledge among different modalities with a 
small mutual learning weight. On the other hand, for a large 𝜆, the model would be led by mutual learning but ignore learning 
10

from the real distributions.
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Fig. 5. The case study results on Fund dataset.

• Particularly speaking, the proposed GNNMR could achieve the best performance on the Top-K recommendation task with 𝑑 = 256
and 𝜆 = 0.5 for both datasets.

4.5. Case study (RQ4)

To validate the proposed method for real-world multi-modal recommendation problems, we conducted experiments on the Fund 
dataset and provided a case study result. In order to verify that leveraging multimodal information can alleviate the cold-start 
problem, we focused on the fund company (i.e., CINDA SECURITIES) with fewer investment projects and provided the top-10 
recommendation results in 2021. Specifically, in Fig. 5, we use boxes of different colors to represent companies belonging to different 
domains. The black solid line represents the ground truth, which is the actual companies invested in by the investment fund company. 
The black dashed line represents discrepancies between the model’s predictions and the ground truth, while the red solid line 
represents instances where the model’s predictions align with the ground truth. The experimental results are shown in Fig. 5, and we 
can observe that:

• The fund company primarily invests in the real estate and manufacturing industries, indicating that our method can effec-

tively learn the multimodal semantic information among different companies and provide relevant recommendations in these 
two industries. For example, our model correctly recommended Gree Electric and Vanke in the manufacturing and real estate 
11

industries, respectively.
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• Despite Datang Telecom Technology and Macrolink not being invested by Cinda Securities, it can be observed that our model 
effectively recognizes the company’s investment preferences in the manufacturing and real estate industries based on modal 
information related to company categories.

• It’s worth noting that although the fund company invests across various domains, our model can effectively capture its pref-

erences in the different domains. One possible reason is that the mutual knowledge distillation technique we employed can 
effectively learn information from different modal features for the cross-domain recommendations.

5. Conclusion

In this paper, we first argue that most current multi-modal recommendation methods suffer from the modality failure issue due 
to overlooking the implicit modalities bias. To alleviate this issue, we propose a deep mutual learning-based fusion-free multi-modal 
recommendation framework, named GNNMR, which can jointly train multiple GNN models on uni-modal user-item bipartite graphs 
without explicit modalities fusion. To validate the effectiveness of the proposed method, extensive experiments are conducted on 
two real-world multi-modal graph datasets for the Top-K recommendation task, and experimental results have demonstrated that the 
proposed GNNMR outperforms the other multi-modal recommendation methods. Since our method can be seamlessly integrated into 
various late fusion methods, studying the impact of different late fusion methods on the performance of our model will be part of 
our future work.
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